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Abstract: - The problem of distributed control of heterogeneous group of vehicles in the environment 
with obstacles is considered. The control algorithms are based on vehicles kinematics in a two 
dimensional environment. The proposed algorithms are based on the principle of consideration all 
neighboring objects as repeller. The proposed method of decentralized group control is based on the 
simple local control algorithms. A new approach for forming repellers is discussed. This approach is 
based on the formation of unstable states in the phase space of vehicles. Results of the proposed 
algorithms are velocities and course angles of the controlled vehicles. Analysis of the received 
movement trajectories on stability is carried out by Lyapunov functions. Existence and asymptotic 
stability of the vehicles group steady state is shown. The planning algorithms modification which isn't 
demanding a preliminary reference is offered. The developed algorithms are realized within the 
decentralized structure of a control system. Simulation of the group consisting of five vehicles in the 
environment with motionless obstacles is carried out. On the basis of the carried-out analysis and 
simulation conclusions results about applicability of the offered method in practice are drawn. The 
development of the offered movement trajectories planning method assuming use as the kinematics 
and dynamics is discussed. This method allows considering convergence velocities with obstacles.  
Also potential of use the offered method in three-dimensional environments and environments with 
mobile obstacles is discussed. 
Key-Words: - group control, vehicle, decentralized control, repeller, unstable state, Lyapunov function. 
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1 Introduction 
The idea of using repelling and attracting sets in 
control systems of vehicles was implemented for the 
first time in A.K. Platonov's research in 1970 [1, 2] 
where the potentials method was presented as a 
solution of the path finding problem. Abroad the 
main references are made to Brooks and Khatib 
works which were published in 1985 and 1896 [3 – 
5]. At the same time paper of Hitachi company 
about mobile robot`s control in which ideas of 
"force field" are used was published in 1984 [6]. 
The method of potential fields is widely adopted 
now. The overview and the analysis of the methods 
where potential fields are used can be found in work 
[7]. In papers [8, 9] the idea of conversion of dot 
obstacles to repeller is explained, using Lyapunov 
theorem of instability. Such approach allows 
realizing movement in the environments with 
obstacles without mapping. In [10] this approach 
was extended to three-dimensional space, and in [7]  
the movement task in the environment with 
obstacles which can form various configurations 
was considered.  
The idea of obstacles representation as repellers can 
be also used at the solution of group control tasks 
[11]. Therefore homogeneous or heterogeneous 
groups [12, 13] can be considered. Groups often 
consist of intelligent robots which can be presented 
as systems supplied with the powerful computer 
system, or as systems constructed on the basis of 
intelligent methods, such as fuzzy logic of L.Zade, 
artificial neural networks and expert systems [14, 
15]. 
Clusters (subgroups) are formed [16, 17] when for 
the solution of a specific objective not all robots in 
group are needed or when several tasks are set for 
group.  
In systems of robots group control methods of the 
centralized, decentralized or hybrid strategy of 
control can be implemented. At the centralized 
strategy each control system of vehicles receives 
algorithm of actions through information channels 
and realizes it. In this case control systems of active 
robots, actually, solve local problems of executive 
mechanisms control; therefore the main part of 
robots group may have not complex computer 
systems. 
The decentralized strategy of control which leads to 
the distributed systems of group control is 
represented as more perspective one. In this regard 
in this paper the problem of the distributed control 
of heterogeneous vehicles group in the two-
dimensional environment with obstacles is 
considered with use of repeller ideology.  
 

2 Algorithm with a predetermined 
trajectory 
We consider vehicle which have the following 
kinematics: (fig. 1) 

1 2cos , sin ,i i i i i iy V y V    
            (1) 

where  1 2,i iy y  are coordinates of vehicle; iV is 

velocity of vehicle; i is course angle of vehicle;

1,i n . 
The position of vehicle is characterized by 

coordinates 1 2,i iy y  in an external 1 2Oy y  system. 

Velocity iV  and course angle i  are controlled 
variables. Each vehicle measures coordinates of 
adjacent objects and has information about 

coordinates ,L Ry y  of area L  in which the group 
functions. The number  n  of vehicles in group isn't 
known. The task of group relocation in the direction 

of an axis 2Oy  with uniform distribution of objects 

along an axis 1Oy  is set. 

 
Fig. 1 – Variable conditions of vehicle and 
coordinate system  

Let`s 2 0iy  , 1 1 , , , 1,i jy y i i i j n   
. We 

specify vehicles so that the index 1,i n  increased 

with increase in 1iy  coordinate. In this case the local 
algorithm of control for vehicle can be synthesized 
as follows. 
We present the neighboring objects in the form of 
repeller for vehicles. Thus, the object neighboring 
objects at the left has to form force which is pushing 
out vehicle to the right, and neighboring object on 
the right – to the left. Functions which are formed 
repeller for the vehicle are presented in fig. 2. 
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Fig. 2 – Formation of repeller 

 
In this work it is offered to form repellent forces in 
the form of the dynamic variable which is result of 
functions integration presented in fig. 2. 
Let`s the functions presented in fig. 2 are power 
functions. Then the specified idea is realized with 
expansion of system by the following equations (2): 

1 1 1 1 1 1

1 1
i

i i i i

z
y y y y 

 
 



, (2) 

where 10 Ly y ; 1 1n Ry y  .  
 As appears from the equation (2), variables 
depend on values, which are inversed to distances 

between 1iR  , iR  and 1iR   vehicles. Let`s initial 
requirements to the vehicles movement trajectory 
presented in the following vector form: 

1 0

2

i i
i

i k

y y

y V

 
    

 

Where 0 ,i ky V  are some numbers not equal to zero. 
To consider influence of repeller, we create vehicle 
control system purpose. It looks like this: 

 1 0

2

1i i i
i

i k

y y z

y V

   
    

 (3) 
 
Thus, at occurrence of the repeller to the left of 

vehicle the variable iz  increases, therefore, the 

component 
 0 1i iy z

also increases. At occurrence 
of the repeller on the right, as appears from (2) 

variable iz  decreases, therefore, expression 

 0 1i iy z
 also decreases. 

The derivative on time from the first element of a 
vector (3) according to the equations (1) (2) is 
described by the following expression: 

  0
1 1 1 1 1 1

1 1
1 cosi i i i

i i i i

V y
y y y y 

 
       


. (4) 

We demand that the vehicle closed control system 
satisfies to the following differential equations: 

  

   
 

01 1 0,

2 0.

i i i

i

T   

 



 (5), 

where 0iT is constant positive number. 
Having substituted in the equation (5) expressions 
(3), (4), we receive: 

  0 0 1 0
1 1 1 1 1 1

1 1
1ix i i i i i

i i i i
iy

k

u y T y y z
y y y y

u
V

 

  
             

      (6) 
2 2

arctan

ix iy

i

iy
i

ix

u u
V

u

u

 
  

         
      (7) 

We carry out the behavior analysis of the closed 
control system which has the following form: 

  0 0 1 0
1 1 1 1 1 11

2

1 1 1 1 1 1

1 1
1

1 1

i i i i i
i i i ii

i k

i

i i i i

y T y y z
y y y yy

y V

z

y y y y

 

 

  
          

      
        







(8) 
From (8), the closed control system is divided on 
two independent subsystems. First subsystem is 
described by the second equation, and second 
subsystem is described by the first and third 
equation. 
We carry out the analysis of the closed control 

system in relation to variables 1iy  and iz  using the 
following equations: 

 

  0 0 1 0
1 1 1 1 1 1 1

1 1 1 1 1 1

1 1
1

1 1

i i i i i
i i i i i

i

i i i i

y T y y z
y y y y y

z

y y y y

 

 

  
                

   





(9) 
Believing in the equations (9) derivatives on time 
are equal to zero, we find the following equations of 
the set state: 

  
1 1 1 1 1 1

0 0 1 0
1 1 1 1 1 1

1 1
0 ,

1 1
0 1 .

i i i i

i i i i
i i i i

y y y y

y T y y z
y y y y

 

 

    
            (10) 

We express from (10) variables 1iy  and iz : 
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1 1 1 1
1

1 1 1 1

0

,
2

1.
2

i i
i

i i
i

i

y y
y

y y
z

y

 

 

 
   
  (11) 

Let`s express recurrence relations (11) through 
,L Ry y  parameters. We write down the first 

equation from (11) for 1i  : 

12
11 2

Ly y
y




 . (12) 

Similarly for 2i   we have: 
12

13
11 13 1312

12 12

13 13
12 12

2 ,
2 2 4 4 2

23
.

4 4 2 3

L

L

LL

y y
yy y yy y

y y

y y yy
y y




      


    

 (13) 

For 3i   we receive: 
13

14
1312 14 14

13 13

14 14
13 13

2
22 ,

2 2 6 6 2
32

.
3 6 2 4

L

L

L L

y y
y yy y y y

y y

y y y y
y y




      


    

  
(14) 
Analyzing sequence (12) – (14) we can write: 

1 1
1 1

L i
i

y iy
y

i



 . (15) 

Now we write down expression (15) for i n : 

1 1
L R

n

y ny
y

n




 . (16) 

Further for 1i n   from (15) taking into account 
(16) we receive: 

 

   

     
 

 

1
1 1

11 1

1 1 1 2 1

1 1

L R
L

L n
n

L L R L R

y ny
y ny n y ny

n n
n y n y n ny y n y

n n n




     

      
 

  (17) 

Similarly, for 2i n   from (15) taking into 
account (17) we receive: 

 
1 2

3 2

1
L R

n

y n y
y

n

 


  (18) 
 
Carrying out the analysis of sequence (16) – (18), 
taking into account the second equation (11), let`s 
receive the following expressions for the equations 
of the closed control systems unstable state: 

 

 
 

1

0

1
,

1
1

1.
1

L R
i

L R
i

i

n i y iy
y

n
n i y iy

z
n y

   
 

     
   (19) 

 

Expressions (19) define values of variables 1iy  and

iz , 1,i n  in the steady state. From (19) it is 
obvious that the established values of coordinates 

1iy  depend only on number of vehicles (n) and 

borders of functioning area ,L Ry y . 
Let`s analyze stability of the closed system (1), (2), 
(6), (7) of rather set mode (19). For this purpose we 
write down the following square form as Lyapunov 
function: 

   
 

22

1
01

1 11
1

2 1 1

n
L R L R

i i
ii

n i y iy n i y iy
V y z

n n y


                        


 
(20) 
Apparently from expression (20) the sum of square 
functions of the set state deviations described by 
coefficients (19) is used as Lyapunov function. 
The derivative on time from function (20) taking 
into account the equation of the closed system (1), 
(2), (6), (7) is equal to: 

     

 
 

1 0 0 1 0

1

0

1
1

1

1
1 .

1

n
L R

i i i i i i

i

L R
i i

i

n i y iy
V y y z T y y z

n

n i y iy
z z

n y



           
            

 



 (21) 
We transform expression (21) to: 
  

 

       

 
 

 

1 0

1

1 0 1 0

1 0
0

1

1

1 1 1
1

1 1 1

1 1
1

1 1

n
L R

i i i

i

L R L R L R
i i i i

L R L R
i i i i i

i

n i y iy
V y y z

n

n i y iy n i y iy n i y iy
y T y y z

n n n

n i y iy n i y iy
z z y y z

n y n



        
            

                  
                       

 

 

       

 
 

1

2

0 1 1 0 0

0

1 1 1
1

1 1 1

1
1 .

1

n

i

L R L R L R
i i i i

L R
i i

i

n i y iy n i y iy n i y iy
T y y T y z

n n n

n i y iy
z z

n y







             
                  

            





(22) 
We allocate full squares in expression (22) using the 
second and the third subexpressions: 
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   
 

 
 

 
 

 

2

0
0 1

01

2
2
0

0 0

1 0

1 1
1

1 2 1

1 1
1 1

4 1 1

1
.

1

n
L R L Ri

i i
ii

L R L Ri
i i i
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i i i

n i y iy n i y iyy
V T y z

n n y

n i y iy n i y iyy
z z z

n y n y

n i y iy
y y z

n



                       

        
                

          







 
(23) 
Again we will allocate full squares, using the second 
and the third subexpressions from expressions (23): 

   
 

 
 

 

2

0
0 1
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2
2

0
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0 0 0
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1
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1 1
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n
L R L Ri
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n i y iy n i y iyy
V T y z

n n y
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n y y y n



                       
                           



 


 (24) 
Applying once again operation of full squares 
allocation, from expression (24), taking into account 
the equation (2), we receive: 
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 
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0
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z
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

 

 

                       

                 
 


   

  




 
2

22
0

1

1
.

1 4 1
L Ri

i

n i y iyy
y

n

 
                     
 

 (25) 
Thus, from (25) follows that equilibrium position 
(19) is asymptotically steady in the closed system 
(1), (2), (6), (7). Thus it is necessary that: 

1 1 1, 1,i iy y i n   . 
 

3 Algorithm with maintenance of the 
formation  
The algorithm of control (6), (7) demands a 
preliminary given motion trajectory. Besides, 
vehicles without algorithm of control (6), (7) move 
with constant velocities therefore do not adhere to 
one line. In the conditions of obstacles various 
vehicles trajectories length may strongly differ, 
therefore it is required to modify algorithms of 
control. For this purpose we enter into consideration 
the following vector of control errors: 

1 1 1 1
1

21 2 2 1

, 1,
2

, , 2,

i i i
i

i

k i i

y y z
y i n

y V y y i n

 



       
    

(26) 
 Let's demand that errors (26) satisfy to the 
following system of the differential equations: 

   
     

1

1 2

1 1 0, 1, ,

2 0, 2 2 0, 2, ,

i i i

i i i

T i n

T i n

    

      




 (27), 

where 1 2,i iT T  are constant parameters. 
Let`s differentiate a vector (26) and substitute it in 
(27). Having resolved system of the algebraic 
equations, we receive: 

 

1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 1

1

2 1 2 2 2 1

1 1

, 1, ,
2 2

,

, 2, .

i i
i i i i i i i

ix i i

y k

iy i i i i

y y
y y y y y y z

u T y i n

u V

u y T y y i n

 
   

 

  
        

 


   

 

  
(28) 
Then the equations of the closed control system look 
like: 

 

1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1

21

2 2 1 2 2 2 1

1 1 1 1 1 1

1 1

, 1, ,
2 2

,

, 2, ,

1 1

i i
i i i i i i i

i i i

k

i i i i i

i
i i i i

y y
y y y y y y z

y T y i n

y V

y y T y y i n

z
y y y y

 
   

 

 

  
        

 


   

 
 

 





 



 
(29) 
The closed system (29), as well as earlier, is divided 
on two independent subsystems. The first subsystem 
consists of the second and the third equations of 
system (29), and the second consists of the first and 
the fourth equations of system (29). 
Let's consider the first subsystem consisting of the 
second and third equations of system (29) and write 
down it in the following form: 
 

   
       

 

21

22 21 2 22 21 2 22 21

23 22 2 23 22 2 22 21 2 23 22 2 23 21

2 2 2 21

,

,

,

...

,

...

k

k

k k

i k i

y V

y y T y y V T y y

y y T y y V T y y T y y V T y y

y V T y y



     

          

  



 

 



 (30) 
Let's integrate the first equation (30): 

0
21 21 ky y V t 

  (31) 
Then, taking into account (31), the last equation 
from (30) looks like: 

 0
2 2 2 2 21i i k ky T y V T y V t   

 (32) 
Solving the equation (32), we receive: 

    20 0 0
2 2 21 21

T t
i i ky t y y e y V t   

(33) 
From expression (33) follows that:

    20 0 0 0
2 2 21 21 21lim lim T t

i i k kt t
y t y y e y V t y V t

 
     

 
Thus, eventually position of all vehicles along an 
axis of Oy2, converge for the position of the most 
left object, i.e. the group maintains a formation. 
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Let's consider the second subsystem consisting of 
the first and fourth equations of system (29). The set 
state of this subsystem is described by the equations: 

1 1 1 1 1 1 1 1 1 1
1 1

1 1 1 1 1 1

1 1

0 ,
2 2

1 1
0 .

i i i i i i i
i i

i i i i

y y y y y y z
T y

y y y y

   

 

 
       

 

 
 

 (34) 
Solving system (34), we receive expressions: 

 

1 1 1 1
1 , 0,

2
i i

i i

y y
y z 

 
 (35) 

Or 

 
1

1
, 0.

1
L R

i i

n i y iy
y z

n

  
 

   (36) 
For research of the closed control systems stability 
we consider the following function: 

2

1 11 1

2 2 2
i i

i i

y y
V y z     

   (37) 
The derivative of function (37) on time owing to the 
equations of the closed system (29) is equal to 
following: 

1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1

2

1 1
1

1 1

2 2 2 2

1 1 1 1

2 2 2 2 2 2 2 2

1

2 2

i i i i
i i i i

i i i i i i i i
i i i i i i i

i i
i i i

y y y y
V y z y z

y y y y y y y y
y z z T y z z

y y
T y z

   

       

 

          
  

                     
    

     
 

   

   
 

  (38) 

Taking into account 0 1,L n Ry y y y   the first 
equation from (35) may be modified to 

 

1 1, , 1,1
1 1 1

iL R L
n i

iyy ny y
y y i n

n i i


    
   . 

(39) 

Let's place the origin of coordinates in Ly  point.  
Then using expression (39) we can write: 

  
1 1

1 1
, , ... .

1 1 1n R n R R

n n
y y y y y y

n n n


  

    
(40) 
From (40) we can find distance between the 
neighboring vehicles: 

1 1 1

1

1 1i i R

L
y y y

n n  
  . (41) 

Thus, the considered control system of vehicles 
group will function successfully when the following 
condition is performed: 

1
j

p
p

L
r

n n


 
. (42) 

Where variable 
j

pr
is obstacle radius. 

 
4 Algorithm with parametrical 
introduction of unstable states 
 
Let's consider the following expressions defining 
errors of vehicles: 

11 1 11 1 11
11 1

1

21

2 2

k

y y LT
y z

e k
y V

    
 

  
(43) 

1 1 1 1 1
1

2 2 1

2 2
i i i

i i
i

i i

y y LT
y z

e k
y y

 



   
 

    (44) 
Let's demand that errors (43), (44) satisfied to the 
following differential equations: 

     2
1 21 1 11 1 0e T z e  

 (45) 
2

2

2

0
0

0
i i

i i

i

T z
e e

T

 
  
 



, 

 2,i n  (46) 
Let's calculate derivative of errors (43), (44) and, 
having substituted them together with (43) in (45), 
(46), we receive the algebraic equations, having 
solved which we find expressions for change of the 
vehicles movement velocities and angles: 

 21 12 11 1 12 11
1 1 21 1 11 1

1

2 2 2 2
L L

x

y
k

y y LT y y LT
u z T z y z

k k
u

V

                     

 


(47) 

 

 
 

21 1 1 1 1 1 1 1 1 1
2 1

2 1 2 2 2 1

2 2 2 2
i i i i i i

ix i i i i i

iy
i i i i

y y LT y y LT
u z T z y z

k k
u

y T y y

   

 

                     

 


 (48) 
Then the equations of the closed system look like: 

 

 

21 12 11 1 12 11
1 21 1 11 1

11

21

1
11 1 12

2 2 2 2

2

L L

k

L

y y LT y y LT
z T z y z

y k k

y V

z k
y y y

L

                          
  

 








(49) 

 
 

 

21 1 1 1 1 1 1 1 1 1
2 1

1

2 2 1 2 2 2 1

1 1 1 1 1

2 2 2 2

2

i i i i i i
i i i i i

i

i i i i i

i
i i i

y y LT y y LT
z T z y z

y k k

y y T y y

z k
y y y

L

   

 

 

                           
  

 




 



, 2,i n . . (50) 
Let's carry out the stability analysis of the first and 
third equations (49), (50), believing that repellent 
forces are formed by the following equation: 

 1 1 1 1 12 /i i i iz k y y y L   
(51). 
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Believing in (49), (50) signals 1 1 1 1,i iy y   are equal 
to zero we receive the following system for the 
analysis of stability: 

 

 21 1
1 2 1

1

1

2 2 2

2

i i i
i i i i

i

i
i

LT LT z
y T z y

y k k
z k

y
L

               
  





. (52) 
Let's choose the following expression (59) as 
Lyapunov function. 

 22
1

1 1
.

2 2i i i iV y y z  
 (53) 

The derivative on time from expression (53) owing 
to system (52) is: 

 

     

2 2
1 2 1

2 2 2 21 1
2 1 2 1 2

2

4
.

2 2

i i i i i

i i
i i i i i i i i i i

V T T z y

T L T Lk
T z T T z y z T z z

k L k

    

          



 (54) 
Let's enter the following notations: 

 

2 1
2

2
, ,

2
i

i i i i i

LT k
R T z a b

k L
   

(55) 
Also we rewrite expression (54) taking into account 
(55): 

   2 2
1 1 1 12 (1 ) 2i i i i i i i i i i i i iV T R y a R T b y z R a z       

 
. (56) 

Let's assume that the vector 
Tzy ][  will be 

subjected to some transformation [18], i.e. 

11 12 1

21 22 2

c cy

c cz

    
              (57), 

where 1 2   are components of a new vector. Thus 
the transformation matrix in (57) such is that 

function iV  in new variables is equal to the sum 
of new variables squares. Then taking into account 
transformation (57) and the accepted assumption 
expression (56) we register so: 

 

  
       

2

1 11 1 12 2

2 2 2
1 11 1 12 2 21 1 22 2 21 1 22 2 1 2

2

1 2 .

i i i

i i i i i i

V T R c c

a R T b c c c c R a c c

      

                  



 
(58) 
 

Let's accept 012 c , and we will receive from (58): 
 

      
      

  

2 2
1 11 1 1 11 1 21 1 22 2

2 2 2 2
21 1 22 2 1 11 1 11 21 21 1

2 2 2 2
22 2 1 11 22 21 22 1 2 1 2

2 1 2

2 1 2

1 2 2 .

i i i i i i i

i i i i i i i i i i

i i i i i i i i

V T R c a R T b c c c

Ra c c T R c a R T b c c Ra c

Ra c a R T b c c Ra c c

             

               
           



 (59). 

Equating coefficients at identical degrees 21,  , in 
the left and right parts (59), we receive system of 
the equations, solving which we find: 

2
22

1

i i

c
R a


, (60) 

 11 21
1

2

1 2
i i

i i i i

R a
c c

a R T b




   , (61) 

   

2
21 2

1
1

1

2
2

1 2
i i

i i i i
i i i i

c
R a

T R R a
a R T b


 

      (62) 
 

Thus, transformation (57), (60) – (62) leads 
expression (56) to the canonical negatively defined  
form therefore conditions of non-peculiarity of 
transformation (57) are conditions of asymptotic 
stability of the closed system (49), (50). 
From expression (60), taking into account 
designations (55), follows that:  

2
2i iT z

. (63) 
Similarly from (61) and (62) we receive: 

1(1 ) 2 0i i i ia R T b   
, (64) 

 2

1 18 ( ) (1 ) 2i i i i i i i iR a T R a R T b    
(65) 

Without reducing a generality, it is possible to 

assume that the condition kL   is satisfied. In this 
case the inequality (65) looks like: 

   
2

22 21 1
1 1 1 14 1 4 2 1 4 4 0

2 2
i i

i i i i i i

T T
T R T T R T

                           (66) 
Thus, search of stability conditions is reduced to the 
solution of a square inequality (66) with restrictions 
(63), (64). 
The graphic solution of the specified inequalities is 
given in fig. 3. 
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Fig. 3 – Graphic solution of inequalities 

 
From fig. 3 we find: 

 
2 2

1 20 4, 4i i i iT z T z    
. (67) 

 

5 Simulation results 
Let`s vehicle model is described by the equations 
(1), and the control is described by expressions (28).  

 
Fig. 4 – Simulation results 

Control system parameters are following: width of a 

working zone 200L  m, 0Ly  m, 200Ry  m;  
5n  is number of vehicles; settings on the velocity 

of 0 1iV  m/s; time constants 1 1iT   s-1; entry 

conditions 2 0iy  ,

11 12 13 14 1510, 20, 30, 40, 50y y y y y      m; 
coordinates of the center are (80, 80); radius of an 
obstacle is 20 m. 

For safety maneuvers of vehicles begin for 10 
meters before achievement of an obstacle. At first 
maneuver starts by the vehicle nearest to the found 
obstacle. Simulation results are given in fig.4. As it 
follows from fig.4 the control system carries out 
equable placement of vehicles along Oy1 axis, and 
provides avoidance of obstacles. 

4 Conclusion 
In paper algorithm of the distributed group control 
of the heterogeneous vehicles functioning in the 
environment with obstacles is offered and analyzed. 
The algorithm is under construction on the control 
principle which allows considering all neighboring 
objects as repeller.  
We propose a method of repellers introduction 
differing in that repulsive forces are formed by the 
dynamic element integrating distances to the 
neighboring obstacles. The carried-out analysis and 
simulation results show efficiency of the offered 
methods in environments with obstacles. Thus the 
offered approach can be applied and to non-
stationary environments since obstacles are 
represented formally as vehicles. 
The offered algorithms can be used in the planning 
movement systems of various objects [19 – 24]. The 
method of planning provides stability of the 
movement at of the object kinematics level.  
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